网站地图 加入收藏 中文 English
 
首页 中心概况 组织机构 研究队伍 科学研究 人才培养 交流合作 支撑服务 人才招聘 下载专区 联系我们
当前位置:首页 - 研究队伍
伊成器

 

伊成器

 

电子邮件: chengqi.yi(at)pku(dot)edu(dot)cn;

电话: +86-10-62752895;

实验室主页: http://yi-lab.org.cn/

 

研究方向:

 

实验室致力于RNA/DNA修饰的生物学通路、功能和机制研究。为了实现这一目标,我们综合运用包括化学生物学、表观遗传学、基因编辑、单细胞组学和基因组学等多学科手段,旨在揭示核酸表观遗传修饰的新颖功能和调控机制。

 

1. RNA修饰和表观转录组学

几十年的研究已经鉴定了100多种转录后修饰。研究人员之前认为,一旦RNA修饰产生,这些共价修饰都是稳定存在、不可逆转的。然而,最近关于6-甲基腺嘌呤(m6A)的一系列研究证明,RNA甲基化也是动态可逆的,并且在基因表达调控中起到重要作用。因此,表观转录组学也随之兴起。

除了m6A,转录组上还存在其它表观遗传修饰。我们课题组最近的研究发现,多种之前认为只在非编码RNA上存在的转录后修饰,即假尿嘧啶(Ψ)1-甲基腺嘌呤(m1A),也广泛存在于哺乳动物的mRNA当中。我们的研究表明这些转录后修饰在转录组中广泛存在,受多种外界刺激的动态调控,并且对于m1A来说,可以被潜在的 “eraser” 消码器蛋白去甲基化。然而,mRNAm1AΨ修饰的生物学功能还尚不清楚。此外,我们最近鉴定了mRNA上的动态、可逆修饰m6Am。我们希望利用课题组已经开发的新颖表观转录组测序技术,来阐释这些RNA修饰在生理及病理条件下的功能和调控机制,从而在表观转录组学这个新兴起的学科中发现一片新大陆

 

2. 基因编辑

基因编辑作为新兴的颠覆式生物技术,已经在生物医药、农业、能源和生物安全等方面展现了巨大的潜力。基于我们在化学生物学、分子生物学和高通量测序等方面的特长,本课题组也评价现有的基因编辑工具,并发展更为精准、强大、便捷的基因编辑新技术。

 

3. DNA修饰和表观基因组学

哺乳动物基因组中,具有5-甲基胞嘧啶(5mC)、5-羟甲基胞嘧啶(5hmC)、5-醛基胞嘧啶(5fC)和5-羧基胞嘧啶(5caC)等多种表观基因组修饰。本实验室开发了多个单碱基、单细胞水平上表观基因组的组学检测技术,未来将应用于单细胞测序和临床研究,以期鉴定疾病的生物标志物。此外,我们也关注染色质可及性的组学检测技术。

 

代表性科研论文:

1. Lei Z, Meng H, Lv Z, Liu M, Zhao H, Wu H, Zhang X, Liu L, Zhuang Y, Yin K, Yan Y, YI C*. Detect-seq reveals out-of-protospacer editing and target-strand editing by cytosine base editors. Nature Methods. 2021; 18: 643-51.

2. Liu J, Li K, Cai J, Zhang M, Zhang X, Xiong X, Meng H, Xu X, Huang Z, Peng J. Fan J*, YI C*. Landscape and Regulation of m6A and m6Am Methylome across Human and Mouse Tissues. Mol Cell. 2020; 77:426-440.

3. Song J, Zhuang Y, Zhu C, Meng H, Lu B, Xie B, Peng J, Li M*, Yi C*. Differential roles of human PUS10 in miRNA processing and tRNA pseudouridylation. Nat Chem Biol. 2020; 16: 160-169.

4. Shu X, Liu M, Lu Z, Zhu C, Meng H, Huang S, Zhang X, Yi C*. Genome-wide mapping reveals that deoxyuridine is enriched in the human centromeric DNA. Nat. Chem. Biol. 2018; 14: 680-687.

5. Li X, Xiong X, Zhang M, Wang K, Chen Y, Zhou J, Mao Y, Lv J, Yi D, Chen X, Wang C, Qian S, Yi C*. Base-Resolution Mapping Reveals Distinct m1A Methylome in Nuclear- and Mitochondrial-Encoded Transcripts. Molecular Cell, 2017; 68: 993-1005.

6. Zhu C, Gao Y, Guo H, Xia B, Song J, Wu X, Zeng H, Kee K, Tang F*, Yi C*. Single-Cell 5-Formylcytosine Landscapes of Mammalian Early Embryos and ESCs at Single-Base Resolution. Cell Stem Cell, 2017; 20: 720-731.

7. Li X, Xiong X, Yi C*. Epitranscriptome sequencing technologies: decoding RNA modifications. Nat. Methods, 2016; 14: 23-31.

8. Li X, Xiong X, Wang K, Wang L, Shu X, Ma S, Yi C*. Transcriptome-wide mapping reveals reversible and dynamic N1-methyladenosine methylome. Nat. Chem. Biol., 2016; 12: 311-316.

9. Li X, Zhu P, Ma S, Song J, Bai J, Sun F, Yi C*. Chemical pulldown reveals dynamic pseudouridylation of the mammalian transcriptome. Nat. Chem. Biol., 2015; 11: 592-597.

10. Xia B, Han D, Lu X, Sun Z, Zhou A, Yin Q, Zeng H, Liu M, Jiang X, Xie W, He C*, Yi C*. Bisulfite-free, base-resolution analysis of 5-formylcytosine at the genome scale. Nat. Methods, 2015; 12: 1047-1050.

 

 

版权所有 999.8vnsr威尼斯人网站有限责任公司 京ICP备15006448号-5